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Abstract
Recent advances in technology have enabled the combination of positron
emission tomography (PET) with magnetic resonance imaging (MRI). These
PET-MRI scanners simultaneously acquire functional PET and anatomical or
functional MRI data. As function and anatomy are not independent of one
another the images to be reconstructed are likely to have shared structures. We
aim to exploit this inherent structural similarity by reconstructing from both
modalities in a joint reconstruction framework. The structural similarity
between two modalities can be modelled in two different ways: edges are more
likely to be at similar positions and/or to have similar orientations. We analyse
the diffusion process generated by minimizing priors that encapsulate these
different models. It turns out that the class of parallel level set priors always
corresponds to anisotropic diffusion which is sometimes forward and some-
times backward diffusion. We perform numerical experiments where we
jointly reconstruct from blurred Radon data with Poisson noise (PET) and
under-sampled Fourier data with Gaussian noise (MRI). Our results show that
both modalities benefit from each other in areas of shared edge information.
The joint reconstructions have less artefacts and sharper edges compared to
separate reconstructions and the ℓ2-error can be reduced in all of the con-
sidered cases of under-sampling.
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1. Introduction

In recent years the landscape of medical imaging has changed. For many decades single
modality scanners to image either anatomy or function have been available and widely used
in clinical practice. Anatomy can be imaged for instance by magnetic resonance imaging
(MRI) and computer assisted tomography (CT). Often functionality is measured by radio-
active labelled markers using positron emission tomography (PET) or single photon emission
computed tomography. Based on these single modality scanners, multi-modality scanners
were developed to combine the strength of both regimes and image both structure and
function. While PET-CT scanners acquire the data for the two modalities sequentially some
recently developed PET-MRI scanners are able to perform both scans simultaneously [1–3].

This development not only opens up new opportunities for clinicians but also poses a
new kind of inverse problem. As ‘function follows structure for the most part’ [4] the
images to be reconstructed are likely to share many edges. Some example images are shown
in figure 1 where the reconstructions from PET, MRI and CT of a single patient are shown
(using standard settings with the scanner software). The images were affinely registered to a
common frame as they were acquired on a sequential PET-CT and on a separate MRI
scanner. Despite the fact that all three images show completely different biological infor-
mation, all three images show similar structures due to the same underlying anatomy.
Therefore, we propose to jointly reconstruct both modalities with the a priori knowledge
that the images are more likely to show similar structures. Some authors refer to this task as
joint inversion [5, 6].

We will focus on joint reconstruction of simultaneously acquired PET-MRI data. All
methods discussed here are, however, not limited to this application. They take similar
structures into account and can therefore be applied to any other multi-modality scanner or
even another field of application where similarity in structure is to be expected.

1.1. Contributions

This work is, to the best of our knowledge, the first contribution to joint reconstruction in
multi-modality medical imaging. We justify the joint objective function used in [5–10] via
probabilistic modelling, which also allows arbitrary noise models to be used in a joint
reconstruction framework. Moreover, we analyse a general class of joint priors [6–13] and
show how they couple the reconstructions in a gradient based optimization scheme. Fur-
thermore, our numerical results show that joint PET-MRI reconstruction can be beneficial to
both of the modalities. Most of the results obtained via joint reconstruction are superior, both
in visual quality as well as in ℓ2-error, compared to some widely accepted methods for
separate reconstructions.
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1.2. Related Work

Joint reconstruction was, as far as we know, first proposed by Haber and Oldenbourg in 1997
[5] where the application of combined PET and MRI reconstruction was already mentioned
but the focus was on geophysical applications. Subsequently, different priors coupling two
modalities have been proposed [6–9, 14]. Some of these are related to the methods we use in
this paper. We will discuss these relations in section 3.

There is a close connection between joint reconstruction and inverse problems in colour
image processing as the colour channels can be seen as different modalities which share
information about edges [10, 12, 13, 15–20]. All methods used in this work have been
proposed first for colour image processing such as denoising and demosaicking [10, 12, 17].

Also closely related is the work where two different MRI data sets of the same subject are
enhanced [21] and reconstructed [22].

Similarly, the reconstruction with a priori information from another modality has also
been studied. This is sometimes referred to as model fusion [6]. In the example of PET and
MRI one might want to reconstruct PET using the additional structural information of MRI.
On the one hand, one may include this information via a structural prior which gives
information about edges [11, 23–28]. On the other hand, theoretical information priors such
as joint entropy and mutual information have been used to inform about likely tissue dis-
tributions [29–32]. None of these priors have been studied for joint reconstruction.

2. Problem setting and notation

This section is dedicated to introduce the problem of joint reconstruction of PET-MRI more
formally and, in addition, it serves to state our notations.

2.1. Positron emission tomography

In PET a radioactive labelled and positron emitting tracer is injected into the patient. As the
positrons annihilate with electrons of the tissue two photons in (almost) opposite directions

Figure 1. Reconstructions of data acquired by PET, MRI and CT of the same patient.
Although the images contain completely different biological information common
shapes can be observed due to the same anatomy. Images courtesy of UCL hospital.
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are sent out which are recorded by detectors around the object. One seeks to reconstruct the
tracer distribution from recorded events from pairs of detectors [33, 34]. In a general con-
tinuous framework this corresponds to the the x-ray transform which coincides with the
Radon transform in 2d [35, 36]. This is of course a simplified model as effects such as scatter
are ignored.

Let us denote the activity of the tracer by Ω ⊂ → ∞u: [0, )N , where =N 2 or 3. We
want to reconstruct u on a discretized domain which we denote for the sake of simplicity
again by ∈u M . The discrete PET forward operator  →A: M K describes how likely it is
that a pair of photons is detected by one of the detector pairs, i.e., Ak m, is the probability for an
event at voxel m to be detected by the k-th detector pair. More accurate modelling would
include the estimation of scatter, randoms and attenuation [34]. The acquired data in PET are
commonly assumed to be an instance of a Poisson distributed vector with expectation Au
[33, 34, 37].

2.2. Magnetic resonance imaging

MRI exploits the spin of hydrogen nuclei in the human body (or any other material). A
magnetic field makes these randomly orientated spins align so that the position of the spin can
be encoded by tiny variations in their resonant frequency. The collected signal corresponds to
the modulated spin density integrated over the whole domain. The inverse problem in MRI is
to reconstruct an image from these Fourier measurements [38, 39].

MRI is a very versatile imaging modality. Depending on the imaging sequence used for
acquisition, the MRI image can reflect the proton density of the tissue or some other tissue
related parameter [38, 39]. Independent of the imaging sequence we will denote the MRI
image by Ω →v: . We denote the discrete MRI forward operator by   → ≃B: M L L2

which consists of the Fourier transform followed by a measurement or sampling operator
being usually a projection on the measured frequencies.

The noise in MRI is commonly modelled as additive Gaussian with standard deviation
depending on, among others, the temperature, the receiver bandwidth and the field strength so
that we acquire data  σ σ∼ >g Bv I( , ), 0 [40–42].

It became popular to speed up the MRI data acquisition by omitting ‘unnecessary’
measurements and ‘replacing’ them using a priori knowledge. This concept known as
compressed sensing [43–46] has been already applied to MRI with great success [22, 47, 48].
Successfully exploited a priori knowledge in MRI includes, for instance, sparsity in the
gradient or wavelet domain [47], sparsity in a self-learned dictionary [48] or similarity from
different MRI contrasts [22]. In our contribution, the additional a priori knowledge is the
similarity of MRI to simultaneously acquired PET.

For simplicity we assume the phase in MRI to be zero and therefore restrict v to be real-
valued.

2.3. Probabilistic modelling for joint reconstruction

As we have now introduced both modalities PET and MRI we can discuss how they can be
linked. We formulate our beliefs using probabilistic modelling and graphical models [49, 50].
The PET and MRI images u v, are random variables. Our intuitive belief about these
unknown images u v, are described in the graphical model shown in figure 2. On the one
hand, both u and v depend on a common object and are therefore not independent of each
other. The data are modelled as random variables with expectation linearly depending on
these images. Hence, also the data of PET f and MRI g are not independent of another. On the
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other hand, if we have knowledge about u, v does not provide extra information about f and
vice versa. This means, that f and g are conditionally independent given u v, . Formally, this
leads to the separation of the multi-modality likelihood

= =p f g u v p f u v p g u v p f u p g v( , , ) ( , ) ( , ) ( ) ( ). (1)

The posterior probability of the PET-MRI image u v( , ) for observed PET-MRI data f g( , ) can
then be simplified as

∝p u v f g p f u p g v p u v( , , ) ( ) ( ) ( , ) (2)

using Bayes’ rule. When we further assume white, complex Gaussian noise in MRI, Poisson
noise in PET and a prior of the form α= −p u v u v( , ) exp ( ( , )) then maximizing (2) is
equivalent to minimizing

 ∑
σ

α= − + − +u v Au f Au Bv g u v( , ) ( ) log ( )
1

2
( , ), (3)

i

i i i 2
2

where = ∑( )x x: | |i i
2 1 2

denotes the ℓ2-norm.

Remark 2.1. The joint objective functional (3) but with Gaussian noise in both modalities
coincides with the functional used in [5–10] up to a scaling of the data fidelity terms.

3. Methods for joint reconstruction

This section describes the models for our prior  which couples the reconstruction of PET
and MRI.

3.1. Parallel level sets

3.1.1. Measuring parallelism. A general concept of coupling structure in a multi-channel
image was proposed [10] with special cases including [6, 7, 12]. Structure in an image can be
identified with its level sets

Ω∈ =x u x s{ ( ) }. (4)

Figure 2. A graphical model encodes our beliefs for joint reconstruction in PET-MRI.
See the text for further details.
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In differentiable images the gradient is perpendicular to the level sets, so similar structures can
be measured by similarity of the gradients’ orientation. Therefore, parallelism of the gradients
at each spatial location is a measure of structural similarity of two images.

3.1.2. Measuring parallelism of vectors. It is well known that for any vectors ∈x y, N the
following relation is fulfilled

θ=x y x y, cos ( ) , (5)

with θ denoting the angle between them in the plane they span and = ∑x y x y, : i i i the
Euclidean scalar product. Consequently, one can determine how parallel x and y are by the
‘distance measure’

= −d x y x y x y( , ) : , . (6)

It is obvious that d is symmetric and ⩾d x y( , ) 0 with equality if and only if x is parallel to y.
These properties guarantee that d is suitable to measure parallelism. Moreover, it can be
generalized to

φ ψ ψ= −φ ψd x y x y x y( , ) : ( ( ) ( , )) (7),

with arbitrary strictly increasing functions φ ψ ∞ → ∞, : [0, ) [0, ). Obviously, φ ψd , is still
symmetric, non-negative and only parallel vectors have minimal ‘distance’.

3.1.3. Measuring parallelism of images. This concept of parallel vectors can be easily applied
to (differentiable) images. Instead of arbitrary vectors we measure how parallel their gradients
are at any point in their domain Ω∈x , i.e.,

φ ψ ψ= −φ ψ      d u x v x u x v x u x v x( ( ), ( )) ( ( ( ) ( ) ) ( ( ), ( ) )). (8),

Hence, we end up with a global measure of how ‘similar’ two images u and v are

∫=
Ω

φ ψ  u v d u x v x xPLS( , ) ( ( ), ( )) d . (9),

In order to make the notation more easily accessible we will suppress the explicit spatial
dependence from now on.

In homogeneous regions of v the gradient v vanishes and this functional does not
provide any information for u. Therefore, one instead can take the modified version

φ ψ ψ= −φ ψ β β β β     ( )( )( )d u v u v u v( , ) : , (10), , 2

proposed in [10] with the ‘smoothed norm’ β= +βx x: ( )2 2 1 2 for some β > 0 and the
global measure reads

∫=β
Ω

φ ψ β  u v d u vPLS ( , ) ( , ). (11), ,

Remark 3.1. The choice how to smooth the norm is rather arbitrary. Other common choices
are the Huber or the log-cosh approximation.

Remark 3.2. In general, one might want to use different smoothing parameters β and γ for
βx and γy but to keep the notation simple we used the same for both modalities.
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Example 3.3. In [10] we applied (11) with φ ψ = id, to denoising and demosaicking of
colour images. We will refer to this prior as linear parallel level sets. Another choice which
was used in [10] is defined by φ = +s s( ) (1 )1 2, ψ =s s( ) 2. Due to the quadratic nature of ψ
we call it quadratic parallel level sets. This functional was first introduced in [12, 13] where it
was motivated by high energy physics. It was observed in [10] that linear parallel level sets
leads to sharper images compared to the quadratic version. We will give a theoretical
justification for this observation in section 4.

Example 3.4. Another choice used previously in geophysics is (9) with φ = id and
ψ =s s( ) 2 [6]. This functional coincides with the squared magnitude of the cross product of
the gradients proposed by [7–9]. Similar functions have been applied to registration [51, 52]
and face recognition [53]. We will only briefly discuss this choice further here because it
possesses unfavourable noise suppression properties.

Remark 3.5. The functional proposed in [11] can be rewritten as

∫ −
Ω
 u u w, . (12)2 2

It is not exactly a special case of the parallel level sets functional but bears lots of similarities.
This functional favours alignment of the gradient of u with the normalized and a priori
defined vector-field w. It is beyond the scope of this paper to investigate such asymmetric
priors for joint reconstruction.

3.2. Joint total variation

There are many extensions of total variation regularization to multi-modality images. Of
importance here is the coupling of the modalities so that one modality can provide infor-
mation to the other. In the case of two modalities  Ω ⊂ →u v, : N the joint total variation
[6] is defined as

∫= +
Ω

 ( )u v u vJTV( , ) . (13)2 2 1 2

This functional was first considered as an extension of total variation for colour images [17].
Another generalization of total variation to colour images was proposed in [54]. While the
former locally couples the support of the gradients, the latter only provides a global effect.
Joint total variation is closely related to block sparsity in the magnitude of the gradient
[55–58]. It is known that usual total variation favours sparsity in the gradient domain which is
enforced by sparsity in the magnitude of the gradient. Joint total variation favours sparsity in
the magnitude of the ‘joint gradient’  u v( , ). Therefore, gradients are more likely to occur at
the same position. Another explanation why joint total variation can be useful for joint
reconstruction is given in the next section.

We will use here a smoothed version of joint total variation so that we can apply tools
from smooth optimization, i.e.,

∫ β= + +β
Ω

 ( )u v u vJTV ( , ) , (14)2 2 2 1 2

for some β > 0. In the notation of the ‘smoothed norm’ introduced above we can write
smooth joint total variation as
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∫=β
Ω

βw wJTV ( ) , (15)

where the vector-valued image Ω →w: 2 is defined as =w x u x v x( ) ( ( ), ( )) and the
gradient is the Jacobian.

4. Analysis of the generated diffusion process

We have introduced the concepts of parallel level sets and joint total variation to couple the
reconstruction of multi-modality images. Priors based on gradient information often lead to a
derivative of diffusion type [10], i.e., if a prior is of the form  ∫ Ψ= u u( ) ( ) with

Ψ = x K x x( ) ( ) then the Gâteaux derivative can be identified with

 = −  D u K u u[ ] div ( ( ) ). (16)

The generated diffusion process depends crucially on the diffusivity K u( ). Its analysis can
give more insight how a prior influences the final reconstruction when an algorithm based on
derivative information is used.

We will see in the following that in both cases the Gâteaux derivative leads to a non-
linear, inhomogeneous diffusion, i.e., the diffusivity depends on the image and the location.
Moreover, in case of parallel level sets the diffusion will be anisotropic, i.e., it depends on the
direction [59, 60].

4.1. Parallel level sets

In order to analyse the diffusion generated by parallel level sets we first need to compute the
Gâteaux derivative. Most of the derivations have already been shown in [10].

Let us denote the space of continuously differentiable functions with zero Neumann
boundary condition by ΩC ( )

*
1 , i.e., the derivative with respect to the normal of the boundary

being zero.

Lemma 4.1. ([10]). Let φ, ψ be continuously differentiable functions. The Gâteaux
derivative of Ω Ω× →β C CPLS : ( ) ( )

*
1

*
1 defined by (11) at u v( , ) is given by

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

κ τ
τ κ

= −β
   
   


( )D u v

u v u v
u v v u

u
v

PLS ( , ) div
( , ) ( , )
( , ) ( , )

(17)

with diffusivities

κ ρ ψ= ′ ⩾β β β β
− ( )x y x y y x x y( , ) : ( , ) 0, (18)1

τ ρ ψ= − ′ ∈β β
− ( )x y x y x y x y x y( , ) : ( , ) , , , , (19)1

2 2

ρ φ ψ ψ= ′ − ⩾β β β( )( )( )x y x y x y( , ) : , 0. (20)2

Remark 4.2. The derivatives and the matrix operations have to be applied component-wise
so that the notation in (17) makes sense.
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The flow generated by (17) is difficult to analyse because of the cross-diffusivities τ.
Therefore, we write an equivalent formulation which does not rely on cross-diffusivities but
on matrix-valued diffusivities.

Proposition 4.3. With the same assumptions as in lemma 4.1 the Gâteaux derivative can be
equivalently rewritten as

⎛
⎝⎜

⎞
⎠⎟= −β

  
  

D u v
K u v u
K v u v

PLS ( , ) div
( , )
( , )

, (21)

where the diffusivities are given by

κ μ= + ∈ ×K x y x y I x y yy( , ) : ( , ) ( , ) , (22)T N N

μ ρ ψ= − ′ ⩽β β
− ( )x y x y x y x y( , ) : ( , ) , , 0. (23)1

2 2

and κ and ρ by (18) and (20), respectively.

Proof. The assertion for the first equation in (21) follows immediately from the fact that
=     u v v v v u, ( )T . Interchanging the roles of u and v completes the proof. □

Remark 4.4. The lemma 4.1 was proven only for βPLS . Under similar conditions on φ and
ψ it also holds for PLS with β| · | being replaced by | · |. Hence, this proposition can be applied
to PLS as well.

For the analysis of the diffusivity we need to remind the reader about the orthogonal
complement and the span.

Definition 4.5. For any ∈y N we can decompose the space as  = ⊕∥ ⊥y yN where span
and the orthogonal complement of y are defined as

 = ∈ ∈∥ { }y sy s: : (24)N

and

= ∈ =⊥ { }y x x y: : , 0 . (25)N

Lemma 4.6. For all matrices κ μ= + ∈ ×K I yyT N N with κ μ ∈, the following holds.

(i) K is symmetric.
(ii) All ∈ ∥x y are eigenvectors to the eigenvalue λ κ μ= +∥ y: 2.
(iii) All ∈ ⊥x y are eigenvectors to the eigenvalue λ κ=⊥ : .

Proof. Ad (i) There is

κ μ κ μ κ μ= + = + = + =( ) ( )K I yy I yy I yy K. (26)T T T T T T T
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Ad (ii) Let ∈ ∥x y . So there is =x sy for some ∈s and hence

κ μ κ μ= = + = +( ) ( )Kx sKy s I yy y s y y y (27)T 2

κ μ λ= + = ∥( )y x x. (28)2

Ad (iii) Let ∈ ⊥x y . Then there is

κ μ κ μ κ λ= + = + = = ⊥( )Kx I yy x x y y x x x, . (29)T

□
To analyse the diffusion we need to introduce local coordinates for the image domain.

Definition 4.7. (local coordinates). Let  Ω ⊂ →f : N be a differentiable function. We
denote by R f[ ] a local coordinate mapping Ω → ×R f[ ]: N N such that for any point Ω∈x
the columns of R f x[ ]( ) form a basis of ⊕∥ ⊥ f x f x( ) ( ) .

Theorem 4.8. Let R u[ ] and R v[ ] be local coordinates for u and v. Then the diffusion (21)
can be rewritten as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Λ

Λ
= −β




D u v
R v u v R v u

R u v u R u v
PLS [ , ] div

[ ] [ , ] [ ]

[ ] [ , ] [ ]
, (30)

T

T

where the diffusivities are defined as

Λ λ λ λ= …∥ ⊥ ⊥     ( )u v u v u v u v[ , ] : diag ( , ), ( , ), , ( , ) (31)

with

λ κ μ λ κ= + ∈ = ⩾∥ ⊥x y x y x y y x y x y( , ) : ( , ) ( , ) ( , ) : ( , ) 0 (32)2

for κ and μ as defined in (18) and (23).

Proof. This result follows immediately from proposition 4.3 combined with lemma 4.6. □

Remark 4.9. Theorem 4.8 tells us that the diffusion for the image u generated by the parallel
level sets functional has principal directions given by the other image v and vice versa.
Moreover, the directions but not the amount of the diffusion are independent of the functions
φ and ψ.

Remark 4.10. In terms of the function ψ ψ= ′s s s˜ ( ) : ( ) the diffusivity in the direction of the
image gradient can be rewritten as

λ ρ ψ ψ= −β β β β
∥ ( )( )( )x y x y y x y y x y( , ) ( , ) ˜ ˜ , (33)2 2

2

so the sign of the diffusivity depends on the monotonicity of ψ̃ . This explains our choice to
name the different methods of parallel level sets by the choice of ψ.

Example 4.11. (Linear Parallel Level Sets). The principal diffusivities for the linear parallel
level sets functional, i.e., (11) with φ ψ = id, , are given by
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λ = −β β β
∥ − −y x y x y, (34)1 2 1

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= − −β β β

β

β

β− −y x x y
x y

x y
x y

x y

x y
x y,

,

,
, (35)1 1

2

2

λ = >β β
⊥ −y x 0. (36)1

It is of interest to analyse the four cases

β
β

→
→

→
→ =

x
y

x y x y

(i) vanishing gradient information, i.e., 0,
(ii) vanishing side information, i.e., 0,
(iii) large gradients, i.e., 0, and
(iv) large and aligned gradients, i.e., 0, , ,

where we always assume that β >x y x y, , | , |, 0. It is easy to compute that the principal
diffusivities are then

λ β β λ β

λ β λ β

λ λ
λ λ

→ − →

→ > →

→ − − ⩽ →
→ →

β β

β β

∥ − − ⊥ −

∥ − ⊥ −

∥ − − ⊥ −

∥ ⊥ −

( )y y y

x x

y x x y x y x y y x

y x

(i)

(ii) 0

(iii) , ( , ) 0

(iv) 0 .

1 1 2 1

1 1

1 1 1

1

Example 4.12. (Quadratic Parallel Level Sets). The principal diffusivities for the quadratic
parallel level sets functional, i.e., (11) with φ = +s s( ) 1 and ψ =s s( ) 2 are given by

λ β= + − >β β β
∥ −( )x y x y1 , 0 (37)2 2 2 2 1 2

2

λ = + − >β β β β
⊥ −( )y x y x y1 , 0. (38)2 2 2 2 1 2

2

For the special cases considered in example 4.11 we get

λ β β λ β

λ β β λ β β

λ λ

λ λ

→ + → +

→ + → +

→ → + −

→ →

β
∥ − ⊥ −

∥ − ⊥ −

∥ ⊥ −

∥ ⊥

( ) ( )
( ) ( )

( )

y y y

x x

y x y x y

y

(i) 1 1

(ii) 1 1

(iii) 0 1 ,

(iv) 0 .

2 2 2 1 2 2 2 2 1 2

2 2 2 1 2 2 2 2 1 2

2 2 2 2 1 2

2

Remark 4.13. Example 4.11 shows that linear parallel level sets yields in some cases
negative principal diffusivities. This is commonly referred to as backward diffusion.
Backward diffusion can lead to instabilities but also might result in sharper images. The
principal diffusivities of quadratic parallel level sets are all positive which makes it more
stable. This analysis explains the observation in [10] where linear parallel sets resulted in
sharper images compared to quadratic parallel level sets.
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Remark 4.14. These examples also show that the diffusion is truely anisotropic as the
diffusion along and perpendicular to the gradient are different except for the case when the
side information vanishes.

Example 4.15. The principal diffusivities for example 3.4 are given by

λ =∥ 0 (39)

λ =⊥ y . (40)2

The flow generated is very simple as there is only diffusion only along the edges. It stops
when side information is flat and is therefore not able to remove noise in this case.

4.2. Joint total variation

In this section we discuss the diffusion which is generated by joint total variation. It follows
immediately from the well known Gâteaux derivative of total variation (see [61]) that the
Gâteaux derivative of joint total variation can be identified with

⎛
⎝⎜

⎞
⎠⎟

η
η

= −β



D u v
u v u
u v v

JTV [ , ] div
( , )
( , )

. (41)

where the diffusivity for both modalities is

η β= + +
−

 ( )u v u v( , ) : . (42)2 2 2 1 2

The diffusivity for both modalities are the same. It reduces to zero when either u or v is
large, hence information about an edge can be transferred from one modality to the other.

The diffusion of joint total variation is isotropic as the diffusivities are scalar-valued.
Similarly to usual total variation [62] one can consider joint total variation with anisotropic
diffusion but this is out of the scope of this paper.

5. Numerical experiments

5.1. Technical details

5.1.1. Implementation. In our experiments we aim to compute minimizers of (3) with and
without an explicit prior. If no explicit prior is used we terminate the iterations before
convergence to regularize the reconstruction. The priors we used include total variation, joint
total variation (see section 3.2) and linear and quadratic parallel level sets (see section 3.1). As
we want to compare the different priors for joint reconstruction we chose to minimize the
functional with the same quasi-Newton method (L-BFGS-B [63], software available at [64]
with mex wrapper for use in MATLAB [65]) in every case. The MATLAB implementation is
available as supplementary data from stacks.iop.org/ip/31/015001/mmedia can be obtained
from the authors’ homepage [66].

Quasi-Newton methods rely on gradient information only and approximate the Hessian.
The gradient of total variation, joint total variation (41), quadratic and linear parallel level
(21) sets all are of diffusion type. Hence, we need to discretize gradients and divergences.
Gradients are discretized with forward differences and the divergence with backward
differences so that the discretized gradient corresponds to the gradient of the discretized
functional.
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5.1.2. Data sets. We consider the setting of joint PET and MRI reconstruction. The PET
operator is modelled to be the discrete x-ray transform taken from [67]. To model the lack of
resolution the operator consists also of a convolution in the sinogram domain in the radial
direction with a Gaussian of full width half maximum of five pixels (for sinograms of size
128 × 300). The ground truth models for both modalities together with the blurry sinogram
for PET are shown in figure 3. Six different cases of MRI undersampling were tested: the first
case of sampling is a fully sampled MRI (full). For the second and third sampling the data
were acquired along 20 and 15 radial lines in k-space (radial20, radial15). The fourth
and fifth case are spirals with either uniform density (spiralUni) or a higher density in the
high frequencies (spiralHigh). In the last test case we performed Cartesian sampling but
only acquired every second line (lines2). The MRI data are presented next to the results.
Gaussian noise with expected energy of 4% is added to the MRI. The PET data is an instance
of a multi-variate Poisson distribution with an expected number of 1e+6 counts in total.

5.1.3. Parameter selection. As both the linear and the quadratic parallel level set priors are
non-convex (see appendix A) we might end up with a local minimizer. Therefore, a good
initial guess is important to end up at a desirable local minimizer.

The parameters α and β are chosen to minimize the relative ℓ2-error of the reconstruction
x and the ground truth x*

= ∣ − ∣ ∣ ∣e x x x x( ) : * * , (43)

where the norms are only taken over the region of interest, see figure 3. This region of interest
was chosen to give no weight to the background and less to large uniform regions as well as
the outer boundary.

5.2. Results

The joint reconstruction approaches described in section 3 are compared against separated
reconstruction which is performed either by total variation or having no explicit prior. The
latter means early stopping for PET or minimal energy (zero filled) reconstruction for MRI.

5.2.1. Visual assessment. Figure 4 shows the results for the case full with the
reconstructed images shown on the left and the error images (compared to the ground truth)
on the right where blue indicates over and red underestimation. The MRI reconstructions are
visually perfect for all priors as it can be seen from both the images themself and the error
images. The results for PET differ a lot between the different priors. When the iterations have
been terminated the reconstruction looks the worst. Most of the introduced artefacts are

Figure 3. The figure shows the ground truth of PET and MRI as well as the PET data.
The region of interest for the quantatitive analysis is marked in red.
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removed when using total variation but the resolution in PET remains more or less the same.
Coupling PET and MRI with joint total variation results in a superior PET image compared to
total variation. Shared edges are better reconstructed using quadratic parallel level sets. In the
case of linear parallel level sets almost no errors at shared edges can be observed. In areas of
shared information the images look almost indistinguishable from the ground truth. The edges
which are not shared between the two modalities introduce a fake edge artefact. From the
error images in PET we see that the errors are decreasing from top to bottom. The errors for
linear parallel level sets are almost only in regions of non-shared edge information; both
coincide with the visual impression on the left.

The results for radial20 are shown in figure 5. With only 20 radial spokes a zero-filled
reconstruction does not give a reasonable reconstruction for MRI any more but including total
variation into the reconstruction resolves most of it. While joint total variation and quadratic
parallel level sets are not able to improve on this linear parallel level sets is able to reconstruct

Figure 4. Reconstruction results for the case full, i.e. MRI is fully sampled. The
reconstructed images are shown in gray scales on the left and the error images in red
and blue on the right where blue indicates over and red under estimation. The methods’
abbreviations are TV=total variation, PLS=parallel level sets.
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with a lot less errors and only the finest lines can not be resolved. The PET reconstructions are
similar to the fully sampled case but linear parallel level sets does show a few errors in
regions of shared edge information. It can also be seen that the two blobs in PET not being
present in MRI are blurrier than total variation and similar to early stopping. This is probably
due to the parameter β being constant over and optimized for the whole phantom.

Reducing the number of spokes to 15 (see figure 6) the difference between separate and
joint reconstruction becomes even larger with linear parallel level sets still being able to
reconstruct reasonable images with only a few errors.

More results are shown in figures 7 and 8 where the MRI data are sampled along spiral
trajectories.

The reconstructions from Cartesian undersampling lines2 are shown in figure 9. While
the separated MRI reconstruction shows a two-fold ghosting of the object, joint
reconstruction, especially linear parallel level sets, can help to complete the missing

Figure 5. Reconstructions for radial20 in gray with the error images shown in blue
and red on the right. The methods’ abbreviations are TV=total variation, PLS=parallel
level sets.
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information. The ghosting of the inner circle is not fully removed as there is no information in
the PET data about this object.

5.2.2. Quantitative assessment. Quantitative results using the relative ℓ2-error over the
whole image can be found in figure 10. The errors for for PET are shown on the left and for
MRI on the right. For PET it is easy to see that for all cases of sampling separate
reconstruction is always worse than joint reconstruction with joint total variation being
weaker than parallel level sets. Among the two parallel level sets priors the linear one
performs much better. Furthermore, it can be seen that the results are quite robust on the kind
and amount of under-sampling.

For full sampling in MRI all methods give very good results. When MRI is reconstructed
from under-sampled data using the zero-filled Fourier transform the results are always the
worst. Total variation performs as well as joint total variation and quadratic parallel level sets

Figure 6. Reconstructions for radial15 in gray with the error images shown in blue
and red on the right. The methods’ abbreviations are TV=total variation, PLS = parallel
level sets.
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in some cases. The errors of the linear parallel level sets reconstructions are smaller in all the
five cases of under-sampling.

6. Conclusion

This work is the first contribution to joint reconstruction in multi-modality medical imaging.
We have shown that the previously used framework for joint reconstruction coincides with
our belief about multi-modality imaging systems like PET-MRI. Three different priors have
been proposed for joint reconstruction of PET-MRI and the corresponding diffusion has been
analyzed. This analysis gives more insight on what images are favoured by these priors.

We presented results where blurry Radon data with Poisson noise (PET) and under-
determined Fourier data with Gaussian noise (MRI) have been combined in a joint recon-
struction process. The numerical results show that our joint reconstruction framework can
successfully couple information from these two imaging systems so that both modalities
benefit.

Figure 7. Reconstructions for spiralUni on the left and their error images on the
right. The methods’ abbreviations are TV = total variation, PLS = parallel level sets.

Inverse Problems 31 (2015) 015001 M J Ehrhardt et al

17



Similar to multiple priors for one modality [68–70] one might be able to include better
the given a priori information by using multiple priors. Moreover, the optimization methods
have to be adapted to the non-convexity of the parallel level set prior. The effect of noise and
non-local parameter tuning for joint reconstruction will also be subject of further research.
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Figure 8. Reconstructions for spiralHigh on the left and their error images on the
right. The methods’ abbreviations are TV = total variation, PLS = parallel level sets.
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Appendix A. Non-convexity of parallel level sets

In this section we show that all considered versions of the parallel level sets framework are
not convex. Under mild conditions a functional  ∫=  u v f u v( , ) : ( , ) is convex if and
only if f is convex. We will now analyze f for the special cases considered above.

Proposition A.1. Let X be a vector space and × →f X X: a convex functional. Then the
growth condition

⩽ +f x y f x f y2 ( 2, 2) ( , 0) (0, ) (A.1)

holds for all ∈x y X, .

Figure 9. The reconstructions for lines2 are shown in gray on the left and the
corresponding error images in blue and red on the right. The methods’ abbreviations
are TV=total variation, PLS=parallel level sets.
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Proof. Let =s 1 2, =z x( , 0)0 and =z y(0, )1 . As f is convex there is

= + −( )f x y f sz s z( 2, 2) (1 ) (A.2)0 1

⩽ + − = +sf z s f z f x f y( ) (1 ) ( ) 1 2 ( , 0) 1 2 (0, ) (A.3)0 1

and the assertion follows directly. □

Example A.2. The quadratic parallel level sets functional (see example 3.3) which
corresponds to

= + −β β β( )f x y x y x y( , ) 1 , (A.4)2 2 2 1 2
2

is not convex in the joint argument.

Proof. Let ∈x y, N so that =x y, 0 and = =x y 1. Furthermore, set =x sxˆ : and
=y syˆ : for any ∈s . Then the necessary growth condition (A.1) for f x y( ˆ, ˆ) reads

β β+ + ⩽ +( ) ( )s s s2 1 2 16 2 1 (A.5)2 2 4 1 2 2 2 1 2

which does not hold for β>s 8 . □

Example A.3. The linear parallel level sets functional (see example 3.3) defined via

= −β β βf x y x y x y( , ) , (A.6)2

is not convex in the joint argument.

Proof. For ∈x y, N defined as in the proof of example A.2 the necessary growth condition
(A.1)

β β β β β β+ + − ⩽ + −( ) ( )s s s2 2 16 2 2 2 (A.7)4 2 2 4 1 2 2 2 2 1 2 2

which is again violated for β>s 8 . □

Figure 10. The figure shows the relative ℓ2-errors over the whole phantom (in percent).
The results for PET depends only on the sampling in MRI in the case of joint
reconstruction. The methods’ abbreviations are TV=total variation, PLS=parallel
level sets.
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